سفارش تبلیغ
صبا ویژن
هرکس برای خدا، بابی از دانش را فرا گیرد تا به مردم بیاموزد، خداوند پاداش هفتاد پیامبر به او بدهد . [پیامبر خدا صلی الله علیه و آله]
 
یکشنبه 97 خرداد 13 , ساعت 12:50 صبح

 

برای دریافت پروژه اینجا کلیک کنید

دانلود تحقیق رایگان منحنی های افقی تحت word دارای 3 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد دانلود تحقیق رایگان منحنی های افقی تحت word کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

این پروژه توسط مرکز مرکز پروژه های دانشجویی آماده و تنظیم شده است

توجه : در صورت  مشاهده  بهم ریختگی احتمالی در متون زیر ،دلیل ان کپی کردن این مطالب از داخل فایل ورد می باشد و در فایل اصلی دانلود تحقیق رایگان منحنی های افقی تحت word ،به هیچ وجه بهم ریختگی وجود ندارد


بخشی از متن دانلود تحقیق رایگان منحنی های افقی تحت word :

خطوط میانی بزرگراه ها و ریلها شامل مجموعه ای از خطوط مستقیم است که توسط منحنی ها بهم متصل هستند. منحنی های ترافیک سریع معمولاً مدور هستند، اگر چه منحنی های حلقه ای ممکن است برای گذر تدریجی ممکن است که استفاده شود، اما منحنی های مدرو نیز این امکان را فراهم می سازد.
در شکل 22-1(a) سه منحنی ترکیب شامل دو یا چند کمان با شعاع های مختلف است. منحنی معکوس شامل دو کمان که در جهتهای متفاوتی خم می شوند. منحنی حلقه ای (یا منحنی انتقال) در شعاع مختلفند، بطوریکه منحنی در ابتدا در صورت مسطح است. همانطور که بسمت انحنا پیش می رود شیب آن افزایش می بابد. منحنی های حلقه ای در شکل 22-1(b) نشان داده شده اند.
شکل 22-1
چندین تعریف مرتبط با منحنی در چند پاراگراف بعدی ارائده شده اند و در شکل 22-2 نشان داده شده اند. یک منحنی در ابتدا با دو خط مستقیم یا تانژانت رسم شده است. این خطوط ادامه می یابد تا یکدیگر را قطع کنند و نقاط تقاطع P.I نامیده می شود. اولین تانژات قطع شده تانژانت عقبی و دومین، تانژانت جلویی نامیده می شود.
شکل 22-2
شکل 22-3
منحنی طوری قرار گرفته است که این تانژانتها را بهم متصل می کند. نقاط روی تانژانتها (P.O.T.S) جایی قرار گرفته اند که منحنی به سمت این تانژانتها انحنا می یابد. اولین نقاط عقبی زوایا در ابتدای منحنی قرار دارند و نقاط انحنا (p-c) نامیده می شوند. دومین آنها در انحنای منحنی و جلوی تانژانت قرار دارند و نقاط تانژانتی (مماسی) p.t نامیده می شود. به عبارت دیگر نقاط انحنا ممکن است به صورت T.C نوشته شود که بصورت C.T نوشته شود که نشان دهنده مسیر عقبی به تانژانتی می باشد.
زوایای میان تانژانتها، زاویه تقاطع نامیده می شود و با حرف I نشان داده می شود. شعاع منحنی R ممکن است در حالیکه T فاصله (مسافت) تانژانت است و برابر است با طول عقبیت یا جلویی تانژانت می باشد. فاصله P.I تا نقاط میانی منحنی، فاصله خارجی نامیده می شود. و توسط E.Finally فرض شده است. تر کمان از P.C تا P.T و تر بلند (L.C) نامیده می شود. و فاصله میانی منحنی تا وسط و تر بلند با حرف M (وتر میانی) نشان داده می شود و L طول واقعی منحنی می باشد.
بحث منحنی های افقی ارائه شده در این فصل کاربرد بخش پایه ای است. اگر چه این مورد، می بایستی تشخیص دهید که تمامی معادلات استفاده شده در زیر برای فاصله متریک همانطور که فاصله کامل 100 متر است معتبر می باشد. چند منحنی افقی در شکل 22-3 نشان داده شده است.
22-2 درجه انحنائ و شعاع انحنا
شیب منحنی ممکن است به روش های زیر شرح داده شود.
1 – شعاع انحناء: این روش اغلب در کارهای بزرگراه ها جانی که شعاع منحنی اغلب از مضربهای looft انتخاب می شود، بکار می رود. هر چه شعاع کوچکتر باشد، قوس منحنی بیشتر و شیب دار می شود. اگر درجه انحناء (که در دو پاراگراف دوری تعریف شده است) نسبت به شعاع منحنی مشخص شود، شعاع ممکن است محاسبه شود. در تمامی احتمالات عدد نامعینی از واحد فوت feet باشد.
2 – درجه انحناء اصل وتر: در این روش، درجه انحناء به اندازه زاویه مرکزی با یک وتر looft متمایل می شود. همانطور که در شکل 22-4 نشان داده شده است، شعاع چنین منحنی ممکن است با معادله زیر محاسبه شود، در حالیکه D تقاطع در واحد درجه می باشد.

دانلود این فایل

 

برای دریافت پروژه اینجا کلیک کنید

لیست کل یادداشت های این وبلاگ